
Chuck Lever – October 2023

TLS handshake for Linux kernel 
consumers
A High-level Overview

1



Acknowledgements

• Jamal Hadi Salim and the NetDev 0x17 program committee


• Jakub Kicinski and the netdev maintainers and community


• My friends and colleagues on kernel-tls-handshake@

2



Presenter’s Biography

• Nearly a quarter century working on the Linux NFS implementation


• Author or co-author of numerous NFS-related IETF RFCs


• Co-maintainer of NFSD (the Linux kernel NFS server)


• Before that, extensive focus on NFS/RDMA


• But only peripheral computer security experience

3



In Scope

• The facility described in this presentation is already in mainline Linux


• See commit 3b3009ea8abb (“net/handshake: Create a NETLINK service for 
handling handshake requests”) [4/23]


• Which kernel consumers want TLS and why (our use cases)


• Alternative approaches to providing TLS handshakes in-kernel


• Thoughts on the use of TPM, NIC offload, keyrings, and other technologies

4



Out Of Scope

• User space applications cannot directly see or use this new facility, since they 
already have access to TLS handshake mechanisms via libraries


• I’m not going to perform a demo today


• Still no user authentication with x.509 certificates


• Our handshake mechanism will never officially support TLS versions older 
than TLS v1.3

5



Our Initial In-Kernel Use Cases

• SunRPC with TLS


• RFC 9289 Towards Remote Procedure Call Encryption by Default [9/22]


• NVMe on TCP with TLS


• NVM Express TCP Transport Specification 1.0c [10/22]


• QUICv1


• RFC 9000 QUIC: A UDP-based Multiplexed and Secure Transport [5/21]

6



Sidebar: RPC-with-TLS

• RPC already has GSSAPI, why does it need TLS too?


• GSS Kerberos has heavyweight infrastructure requirements


• TLS is now a commodity technology (web, email, etc)


• GSS Kerberos encryption cannot easily be offloaded (key-per-user versus 
key-per-host)


• TLS gets new encryption algorithms more quickly than Kerberos does


• TLS encryption can be enabled with a single server-side certificate, which can 
enable better security for deployments that wish to continue using AUTH_SYS

7



The Benefits of kTLS

• Existing kTLS implements the TLS Record protocol in the kernel. Each 
endpoint looks like a regular network socket.


• Without much modification, kernel kTLS consumers can utilize either:


• A software TLS implementation based on the kernel’s crypto


• A hardware TLS implementation provided in the NIC


• To initialize the session, first a handshake must optionally authenticate, 
negotiate a session key, and select encryption and MAC algorithms

8



Alternative Approaches

• Grow an in-kernel TLS handshake implementation


• Run a full user space library in a protected middle layer


• Pass open sockets to a user space library


• accept(2)


• call_usermodehelper


• netlink

9



The Selected Approach

• A new netlink protocol was constructed for passing an open file descriptor to 
user space


• A new daemon was created that waits for these fds, passes them to a library 
(GnuTLS), then sets kTLS socket options with the negotiated results


• A kernel consumer can open a socket and probe for TLS support. Then:


• The new handshake mechanism dups that socket and passes the dup’d fd 
up to the daemon


• The kernel consumer sleeps while waiting for the handshake result

10



Netlink Protocol

• READY (kernel -> multicast group)


• Indicates an in-kernel consumer wants a handshake


• ACCEPT (user space -> kernel)


• Takes an MC group, and returns a socket descriptor and handshake 
parameters. Agent can then perform a TLS handshake on the socket.


• DONE (user space -> kernel)


• The agent has either primed a socket for use with kTLS, or the handshake 
failed

11



Managing Authentication Material

• Certificates, PSKs, CA bundles, and private keys are typically stored in files


• The ULP has to select and provide the material,


• The handshake agent can have suitable default material,


• The kernel or handshake agent can retrieve the material from a TPM, or


• The ULP or kernel can copy the material into a long-lived keyring 

12



Keyrings

• Although tlshd reads default authentication material from files, upper layer 
protocols can provide material in keys


• tlshd checks its process group keyring, and possibly other keyrings


• ULPs can pass key serial numbers for PSKs, x.509 certificates, and private 
keys


• Some of these can be long-lived

13



Future Work

• Support for DTLS is planned but not started


• Support for QUIC is under way (see slide 6)


• Support for session re-key has been proposed for kTLS; planned for the 
netlink protocol and tlshd, but not started


• Support for storing certs in TPM is planned but not started


• Tackling TLS protection for root filesystem resources is still being discussed

14



Component Availability

• A TLS handshake user agent (tlshd) is part of ktls-utils


• Upstream is https://github.com/oracle/ktls-utils


• ktls-utils has been packaged for Fedora, SuSe, and Debian


• The kernel handshake API was merged in v6.4, along with server-side SunRPC and 
NFSD support for RPC-with-TLS


• Client-side SunRPC and NFS client support is in v6.5


• NVMe with TLS is coming soon (patches are under review)


• In-kernel QUIC prototype: https://github.com/lxin/quic

15

https://github.com/oracle/ktls-utils


AMA & Discussion

16


